Overall Features
Overall Features
Optivize - Quick Start Technical Guide
FEATURE 1: AI Product Predictor
Technical Implementation
- Frontend: Event-driven JavaScript with debounced input validation and progressive form enhancement
- Data Flow: User Input → JSON Validation → API POST → ML Pipeline → Feature Engineering → Model Training/Inference → Response Rendering
- ML Model: Scikit-learn RandomForestRegressor with feature importance and cross-validation
API Design
POST /api/train { samples: [{product_type, seasonality, price, marketing, distribution_channels, success_score}] } POST /api/predict { product_type, seasonality, price, marketing, distribution_channels } GET /api/history Returns paginated prediction history with filtering
Smart Parts
- Feature Engineering: Categorical encoding (one-hot), numerical scaling (StandardScaler), temporal encoding for seasonality
- Real-time insights: Price positioning vs. market, marketing effectiveness scores, seasonality impact analysis
FEATURE 2: Smart Inventory Manager
Technical Implementation
- Database Schema: Hierarchical groups and items with foreign key relationships enforcing referential integrity
- Frontend State Management: Custom observer pattern for reactive UI updates
- Data Flow: Optimistic UI update → API Call → Server validation → DB transaction → Response → UI confirmation
API Endpoints
GET /api/deck POST /api/deck GET /api/deck/{id}?include_cards=true PUT/DELETE /api/flashcard/{id}
Smart Parts
- Optimistic UI updates for instant feedback
- Relational integrity via CASCADE deletes to prevent orphaned items
- Efficient queries using SQL JOINs to load groups with item counts
FEATURE 3: Google Sheets Import
Technical Implementation
- OAuth2 Flow: PKCE implementation for secure authorization without client secrets
- Data Pipeline: Sheet ID → OAuth redirect → Token exchange → Sheets API → Data transformation → Bulk insert → UI refresh
- Session management: OAuth state stored temporarily with CSRF protection and cleanup
API Architecture
GET /google/connect POST /google/import Callback: /auth/callback?code=xxx&state=xxx
Smart Parts
- Minimal OAuth scopes (read-only) and CSRF prevention via state parameter
- Intelligent column mapping detects quantity and description formats
- Error handling for expired tokens, malformed sheets, and network failures with user feedback
FEATURE 4: Smart Alerts (Zapier Integration)
Technical Implementation
- Webhook REST endpoints optimized for Zapier polling every 15 minutes
- Dynamic URL generation with proper encoding for phone numbers and thresholds
- Notification payloads vary by channel: email, SMS, or both
API Endpoints
GET /api/zapier/low-stock/{item_id}/{threshold} GET /api/zapier/low-stock-sms/{item_id}/{threshold}?phone=+1234567890 GET /api/zapier/low-stock-both/{item_id}/{threshold}?phone=xxx
Smart Parts
- Minimized unnecessary processing by returning empty responses when thresholds not breached
- Consistent backend logic generates multi-channel message formats
- International phone validation with country code detection and SMS provider compatibility
FEATURE 5: Smart Calendar
Technical Implementation
- Frontend: Custom JavaScript calendar widget with event drag/drop and responsive design
- Backend: RESTful API supporting CRUD operations for events linked to user IDs
- Data Model: Events include title, description, start/end datetime, reminder settings, and category tags
- Synchronization: Option to sync with Google Calendar API via OAuth2
API Endpoints
GET /api/calendar/events?user_id=123&date=YYYY-MM-DD POST /api/calendar/events PUT /api/calendar/events/{event_id} DELETE /api/calendar/events/{event_id}
Smart Parts
- Real-time conflict detection with visual feedback
- Reminder notifications via email or SMS integrated with the alerts system
- Category color-coding for quick visual parsing
- Offline mode support with localStorage caching and sync on reconnect
System Architecture & Data Flow
- Frontend: Jekyll + Vanilla JS
- Backend: Python Flask API Gateway
- Database: SQLite/PostgreSQL managed with migrations
- External Integrations: Google Sheets OAuth2, Zapier Webhooks
- ML Pipeline: Scikit-learn RandomForest with GridSearchCV tuning
Database Schema
Users: id, username, email, created_at Groups: id, title, user_id, created_at Items: id, title, content, deck_id, user_id, created_at Predictions: id, user_id, product_data, score, created_at Models: id, user_id, model_data, accuracy_metrics, created_at Events: id, user_id, title, description, start_time, end_time, category, reminder, created_at
API Response Pattern
{ "success": true, "data": {...}, "message": "Operation completed", "metadata": { "timestamp": "...", "user_id": "..." } }
Machine Learning Deep Dive
Model Training Pipeline
- JSON schema validation, outlier detection, completeness checks
- Feature engineering: one-hot encoding, StandardScaler, temporal features
- Model: RandomForestRegressor with hyperparameter tuning (GridSearchCV)
- Validation: K-fold cross-validation, R² scoring, MAE calculation
- Persistence: Joblib serialization with versioning for rollback
Prediction Analytics Engine
feature_weights = { 'price_position': model.feature_importances_[0], 'marketing_effectiveness': model.feature_importances_[1], 'distribution_reach': model.feature_importances_[2], 'seasonality_match': model.feature_importances_[3] } insights = { 'price_analysis': calculate_market_positioning(price, category), 'marketing_score': assess_marketing_effectiveness(marketing_level), 'seasonality_impact': analyze_seasonal_patterns(product_type, season), 'recommendations': generate_actionable_advice(prediction, feature_weights) }